Carbon and Nitrogen Provisions Alter the Metabolic Flux in Developing Soybean Embryos1[W][OA]

نویسنده

  • Doug K. Allen
چکیده

Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through metabolic flux analysis. Labeling experiments utilizing [U-C5]glutamine, [UC4]asparagine, and [1,2C2] glucose were performed to assess embryo metabolism under altered feeding conditions and to create corresponding flux maps. Additionally, [U-C12]sucrose, [UC6]glucose, [UC5]glutamine, and [UC4]asparagine were used to monitor differences in carbon allocation. The analyses revealed that: (1) protein concentration as a percentage of total soybean embryo biomass coincided with the carbon-to-nitrogen ratio; (2) altered nitrogen supply did not dramatically impact relative amino acid or storage protein subunit profiles; and (3) glutamine supply contributed 10% to 23% of the carbon for biomass production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amino acids. Seed metabolism accommodated different levels of protein biosynthesis while maintaining a consistent rate of dry weight accumulation. Flux through ATP-citrate lyase, combined with malic enzyme activity, contributed significantly to acetyl-coenzyme A production. These fluxes changed with plastidic pyruvate kinase to maintain a supply of pyruvate for amino and fatty acids. The flux maps were independently validated by nitrogen balancing and highlight the robustness of primary metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos.

Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through...

متن کامل

Influence of carbon to nitrogen ratios on soybean somatic embryo (cv. Jack) growth and composition

Soybean [Glycine max (L.) Merr.] seed are valued for their protein and oil content. Soybean somatic embryos cultured in Soybean Histodifferentiation and Maturation (SHaM) medium were examined for their suitability as a model system for developing an understanding of assimilate partitioning and metabolic control points for protein and oil biosynthesis in soybean seed. This report describes the g...

متن کامل

Predictive Modeling of Biomass Component Tradeoffs in Brassica napus Developing Oilseeds Based on in Silico Manipulation of Storage Metabolism1[W][OA]

Seed oil content is a key agronomical trait, while the control of carbon allocation into different seed storage compounds is still poorly understood and hard to manipulate. Using bna572, a large-scale model of cellular metabolism in developing embryos of rapeseed (Brassica napus) oilseeds, we present an in silico approach for the analysis of carbon allocation into seed storage products. Optimal...

متن کامل

The Effect of Different Concentrations of Activated Carbon with Bleaching Earth During Bleaching Process on Physicochemical Properties of Soybean Oil

Considering the importance of bleaching earth with activated carbon in reduction of impurities in vegetable oils, this study was conducted to investigate the effects of bleaching process on physicochemical properties of the bleached soybean oil. The bleaching process was carried out with bleaching earth (1 % w/w) containing different concentrations of activated carbon (0.1 % up to 0.5 % w/w). T...

متن کامل

Does elevated atmospheric [CO2] alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves?

Increases in growth at elevated [CO2] may be constrained by a plant's ability to assimilate the nutrients needed for new tissue in sufficient quantity to match the increase in carbon fixation and/or the ability to transport those nutrients and carbon in sufficient quantity to growing organs and tissues. Analysis of metabolites provides an indication of shifts in carbon and nitrogen partitioning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013